# Maximum Crossings (Easy Version) solution codeforces

## Maximum Crossings (Easy Version) solution codeforces

The only difference between the two versions is that in this version n1000n≤1000 and the sum of nn over all test cases does not exceed 10001000.

terminal is a row of nn equal segments numbered 11 to nn in order. There are two terminals, one above the other.

You are given an array aa of length nn. For all i=1,2,,ni=1,2,…,n, there should be a straight wire from some point on segment ii of the top terminal to some point on segment aiai of the bottom terminal. For example, the following pictures show two possible wirings if n=7n=7 and a=[4,1,4,6,7,7,5]a=[4,1,4,6,7,7,5].

crossing occurs when two wires share a point in common. In the picture above, crossings are circled in red.

What is the maximum number of crossings there can be if you place the wires optimally?

Input

## Maximum Crossings (Easy Version) solution codeforces

The first line contains an integer tt (1t10001≤t≤1000) — the number of test cases.

The first line of each test case contains an integer nn (1n10001≤n≤1000) — the length of the array.

The second line of each test case contains nn integers a1,a2,,ana1,a2,…,an (1ain1≤ai≤n) — the elements of the array.

The sum of nn across all test cases does not exceed 10001000.

Output

For each test case, output a single integer — the maximum number of crossings there can be if you place the wires optimally.

Example
input

Copy
4
7
4 1 4 6 7 7 5
2
2 1
1
1
3
2 2 2

output

## Maximum Crossings (Easy Version) solution codeforces

Copy
6
1
0
3

Note

## Maximum Crossings (Easy Version) solution codeforces

The first test case is shown in the second picture in the statement.

In the second test case, the only wiring possible has the two wires cross, so the answer is 11.

In the third test case, the only wiring possible has one wire, so the answer is 00.